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ABSTRACT

The minimum spanning tree (MST) histogram is a multivariate extension of the ideas behind the conventional
scalar rank histogram. It tabulates the frequencies, over n forecast occasions, of the rank of the MST length for
each ensemble, within the group of such lengths that is obtained by substituting an observation for each of its
ensemble members in turn. In raw form it is unable to distinguish ensemble bias from ensemble underdispersion,
or to discern the contributions of forecast variables with small variance. The use of scaled and debiased MST
histograms to diagnose attributes of ensemble forecasts is illustrated, both for synthetic Gaussian ensembles and
for a small sample of actual ensemble forecasts. Also presented are adjustments to x2 critical values for evaluating
rank uniformity, for both MST histograms and scalar rank histograms, given serial correlation in the forecasts.

1. Introduction

Ensemble forecasting is now well established as a
technique that is relevant at a variety of spatial scales
and lead times (e.g., Du et al. 1997; Eckel and Walters
1998; Hamill and Colucci 1997; Houtekamer et al. 1996;
Molteni et al. 1996; Stensrud et al. 1999; Toth and Kal-
nay 1997). The aim in ensemble forecasting is to ap-
proximate the probability distribution reflecting the un-
certain components of the forecast system (prominently,
initial-state uncertainty) using an ensemble (i.e., a finite
collection) of specific plausible initial conditions. If the
initial ensemble consists of a random sample from the
underlying probability distribution of initial-condition
uncertainty, and each ensemble member is integrated
forward in time according to a perfect dynamical model,
the resulting ensemble of forecasts should represent a
random sample from the probability distribution of fu-
ture-state uncertainty, and the actual state to which the
real atmosphere evolves should be yet another random
sample from this distribution.

In practice the initial ensemble is not a random sample
from the relevant distribution (for a variety of reasons,
not least of which is that this distribution is unknown),
and the forecast models are not perfect. Therefore, one
aspect of interest in the verification of ensemble fore-
casts is the degree to which the observed (or analyzed)
future atmospheric states appear to be plausible mem-
bers of their forecast ensembles.
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For one-dimensional (i.e., scalar, or univariate) fore-
casts, a popular graphical device for addressing this
question is the rank histogram (Anderson 1996; Hamill
and Colucci 1997; Harrison et al. 1995). To tabulate a
rank histogram, the rank of the observation within the
nens 1 1 member collection defined by the union of the
nens-member ensemble and the observation is deter-
mined. Equivalently [provided none of the ensemble
members is exactly equal to the analysis; otherwise see
Hamill and Colucci (1997)], one is added to the number
of ensemble members exceeded in magnitude by the
corresponding observation. If the premise is true that
the observation and the ensemble members have been
drawn from the same distribution, any of the nens 1 1
ranks is an equally likely position for the observation
on any particular forecast occasion. Collectively, over
some number n forecast occasions, a histogram of these
nens 1 1 ranks—the rank histogram—will be uniform,
or flat, within the limits of a finite sample. Particular
deviations from the ideal situation of the observation
and ensemble members being drawn from the same dis-
tribution are reflected in deviations of the rank histo-
gram from uniformity: positive or negative ensemble
biases produce overpopulation of the lowest or highest
ranks, respectively; underdispersed ensembles produce
U-shaped rank histograms; and overdispersed ensem-
bles result in underpopulation of the extreme ranks, or
mound-shaped rank histograms (Hamill 2001).

When the forecast is multidimensional, pertaining for
example to several meteorological elements simulta-
neously at one location, or to forecasts of the same (or
multiple) forecast elements at a collection of locations,
the scalar rank histogram does not apply. However, a
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FIG. 1. Hypothetical example MSTs in K 5 2 dimensions. The nens 5 10 ensemble members are labeled A–J, and the corresponding
observation is O. Solid lines indicate MSTs for the ensemble as forecast, and dashed lines indicate MSTs that result from the observation
being substituted for ensemble member D. (a) A configuration that could result from an overdispersed ensemble, where the observation is
interior to the point cloud of the ensemble. (b) A configuration that could result from an underdispersed ensemble and/or a substantial
ensemble mean error.

conceptual extension of the basic approach from scalar
to multidimensional (i.e., vector) forecasts has been sug-
gested by Smith (2001), in terms of the lengths of min-
imum spanning trees (MSTs) (Ahuja et al. 1993). Con-
sider a geometric space, each of whose K coordinate
axes correspond to one of the forecast elements and/or
locations. Let xi,k be the value of kth element of the ith
ensemble member; k 5 1, . . . , K; i 5 1, . . . , nens. One
can compute the (nens) (nens 2 1)/2 pairwise Euclidean
distances among the points in this space,

1/2K

2D 5 (x 2 x ) . (1)Oi, j i,k j,k[ ]k51

The MST for these nens points is the set of nens 2 1 line
segments connecting all of the points, such that the net-
work contains no closed loops, and the sum of the
lengths Di,j of these segments is minimized. The solid
lines in Figs. 1a and 1b show MSTs in K 5 2 dimensions
for two ensembles with nens 5 10, the members of which
are labeled A–J.

In a manner similar to the ordinary rank histogram
for scalar ensemble forecasts, the MST histogram tab-
ulates the rank of the MST length computed for the nens

ensemble members only, within the nens 1 1 element
distribution consisting of the union of the ensemble-
only MST length, with the nens MST lengths obtained
by substituting the observation for each one of the en-
semble members in turn. That is, one is added to the
number of the nens MSTs in which the observation has
been substituted for one of the ensemble members,
whose lengths are exceeded by that for the MST of the
ensemble as actually forecast. [Note that this convention

is the reverse of that in Smith (2001) but is consistent
with usual practice for rank histograms (e.g., Hamill
2001)]. If the ensemble and the subsequent analysis it
is meant to predict have been drawn from the same (K
dimensional) probability distribution, then the lengths
of the MSTs obtained by substituting the observation
for any of the ensemble members should be statistically
indistinguishable from the length of the MST computed
from the ensemble members only. Over a large number
n of forecast occasions, the histogram of these ranks—
the MST histogram—should be essentially uniform, or
flat.

While the scalar rank histogram and the MST his-
togram are similar in concept, it should be noted that
the MST histogram is not a mathematical generalization
of the conventional rank histogram. In particular, the
MST histogram does not reduce to the scalar rank his-
togram in the special case of K 5 1 dimension. Indeed,
in one dimension the MST length is trivially the range
(maximum minus minimum) of the data.

The purpose of this paper is to outline some important
considerations that bear on the use of the MST histo-
gram and to catalog some typical behaviors under var-
ious deviations from perfect ensembles, which result in
different types of nonuniform MST histograms. Section
2 details these considerations and typical behaviors in
the context of synthetic data. Section 3 applies these to
a particular small sample of actual ensemble forecasts.
Section 4 considers the question of statistical signifi-
cance for rank uniformity as a function of ensemble
size, sample size, and nonindependence of the ensem-
bles and provides corresponding results for scalar rank
histograms. Section 5 provides conclusions.
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2. The MST histogram

a. Raw MST histograms

As noted earlier, the solid lines in Fig. 1 indicate
MSTs for two ensembles whose members are labeled
A–J. The point representing the corresponding obser-
vation is labeled O in Figs. 1a and 1b, and the dashed
lines show the MSTs that result when the observation
is substituted for ensemble member D in each case. In
Fig. 1a this substitution results in a shorter MST, with
the sum of the lengths of the solid and dashed lined
segments being 8.0 and 7.5, respectively. The rank of
the solid-line MST depends also on the lengths of the
other nine MSTs, resulting from each of the other nine
ensemble members being replaced by the observation
in turn. In Fig. 1a, the lengths of eight of these MSTs
are shorter than 8.0, and they are also shorter than the
one obtained by replacing point G by the observation,
which is very slightly longer than 8.0. Therefore, the
rank of the length of the solid MST in Fig. 1a is 10 out
of 11. In Fig. 1b, the length 6.3 of the solid MST is
shorter than all 10 of the MSTs obtained by replacing
an ensemble member A–J by the observation point O,
so its rank is 1 out of 11.

Each of these two hypothetical MST ranks pertains
to one ensemble forecast and its corresponding obser-
vation or analysis. An MST histogram consists of the
histogram, collectively over some large number n of
such forecasts, of the frequencies of occurrence of the
nens 1 1 possible ranks. If, over this sample of n fore-
casts, the observations have been drawn from the same
probability distributions as the respective ensemble
members, this histogram will be essentially flat, or uni-
form. Figure 2 shows one such example, together with
29 others, exhibiting various deviations from this same-
distribution condition. These are results for synthetic
ensembles and observations, generated in each case
from n 5 1000 independent K 5 10-dimensional mul-
tivariate normal distributions, with an ensemble size of
nens 5 10. The horizontal dimension is the ratio of the
standard deviations (in all 10 dimensions simultaneous-
ly) of the ‘‘truth’’ distribution (from which the ‘‘obser-
vation’’ has been generated) to those of the ensemble
distribution. Thus ratios of struth/sensemble greater and less
than 1 indicate underdispersed and overdispersed en-
sembles, respectively. The vertical dimension in Fig. 2
reflects ensemble bias, or systematic ensemble mean
error, expressed in terms of Mahalanobis distance (e.g.,
Mardia et al. 1979):

T 21 1/2D 5 [(m 2 m ) (S ) (m 2 m )] . (2)truth ens ens truth ens

This is a nondimensionalized distance measure that is
essentially the multivariate counterpart of the ‘‘z score’’
(or ‘‘standardized anomaly;’’ e.g., Wilks 1995), in which
differences between the vector mean mtruth of the dis-
tribution from which the analysis is generated, and the
mean mens of the distribution from which the ensemble
is drawn, are scaled by ‘‘dividing by’’ ensemble stan-

dard deviations (multiplication by the inverse of the
covariance matrix [Sens] representing the ensemble dis-
persion, so that correlations among the K dimensions
are also accounted for). The vertical scales in each of
the panels of Fig. 2 have been varied for clarity of
presentation, but in each case the horizontal dashed line
indicates the level of the number of ‘‘expected’’
[5n/(nens 1 1) 5 91] counts per bin rank under uni-
formity.

The top row in Fig. 2 shows behaviors of MST his-
tograms for unbiased forecasts, that is, for cases where
the (vector) means mens and mtruth of the distributions
from which the ensemble and the observation are drawn
are equal for each of the n forecast occasions (although
not necessarily the same from occasion to occasion).
Here the MST histogram for struth/sensemble 5 1 exhibits
uniformity, within typical sampling variability for this
sample size. Unbiased but overdispersed ensembles (left
panels of top row) exhibit overpopulation of the higher
ranks, reflecting the preponderance cases in which the
MST length for the ensemble alone is the largest or
among the largest of the nens 1 1 MSTs for a given
forecast. This condition tends to occur for overdispersed
ensembles because the observation is often interior to
the scatter of the ensemble, as in Fig. 1a, allowing space
in the middle of the ensemble to be bridged (e.g., be-
tween the groups A–D and E–J in Fig. 1a) through that
point, while dropping the segments associated with the
omitted point elsewhere in the tree. This condition is
accentuated in higher dimensions, where it is increas-
ingly unlikely for an ensemble member to occur near
the ensemble mean, because its value in all K dimen-
sions must be near the corresponding mean value si-
multaneously. Quantitatively, for multivariate normal
data (although the qualitative result does not depend on
the distribution), the square of the Mahalanobis distance
D in Eq. (2) (but between individual data values and
their mean) follows the x2 distribution, with degrees of
freedom equal to the dimension K of the space. This is
so because the transformation produces K-independent
standard Gaussian random variables (Mardia et al.
1979), the sum of the squares of which is well known
to follow the distribution. The result is that the most2xK

likely value of the distance D between a Gaussian en-
semble member and its mean is greater than zero and
increasing in K for K $ 3.

Even without ensemble bias, underdispersed ensem-
bles (struth/sensemble . 1) characteristically exhibit over-
population of the smallest ranks. The MST length for
the ensemble members alone tends to be the smallest
or among the smallest of the nens 1 1 MST lengths
because, for the remaining MSTs, the substantial dis-
tance between the observation and the ensemble is add-
ed to the MST length while a shorter segment within
the ensemble is deleted (Fig. 1b). However, the obser-
vation is also usually well removed from the ensemble
when there is a large ensemble mean error due to fore-
cast bias. Thus, raw MST histograms for substantially



1332 VOLUME 132M O N T H L Y W E A T H E R R E V I E W

FIG. 2. Behaviors of MST histograms for nens 5 10 in K 5 10 dimensions, as functions of ensemble bias (vertical)
and ensemble underdispersion (horizontal), from independent samples of size n 5 1000. Vertical scales on each histogram
have been varied for clarity of presentation, with the level of the expected number per bin under uniformity (1000/11
5 91) indicated in each case by the dashed line.

biased forecasts toward the bottom of Fig. 2 cannot be
distinguished from MST histograms for underdispersed
ensembles toward the right of Fig. 2. Similarly, the ef-
fects of ensemble bias and overdispersion can compen-
sate to a degree, yielding MST histograms that are nearly
uniform (e.g., bias 5 2 and struth /sensemble 5 0.8 in
Fig. 2).

b. Scaled and bias-adjusted MST histograms

Figure 2 shows that raw MST histograms cannot dis-
tinguish between ensemble underdispersion and ensem-
ble bias. Another problem may occur when there are
different measurement scales or scales of variability on
the different elements of the ensemble vector x. That
is, if some of the K elements of x have variances that

are very much smaller than the others, the MST will
essentially ignore these dimensions because the corre-
sponding terms in Eq. (1) will be small, so that the MST
will essentially occupy only a subspace spanned by the
high-variance elements.

These two problems can be addressed by computing
MSTs using bias-corrected and scaled ensembles. First,
the bias-corrected ensemble vector x* has elements

nens1
x* 5 x 2 x 2 o , k 5 1, . . . , K.(3)Ok k k k7 8n i51ens

Here the xk are the elements of a raw ensemble vector,
and the angle brackets indicate the averages over all n
ensembles and their corresponding observations, ok.



JUNE 2004 1333W I L K S

FIG. 3. Comparison of a hypothetical 50-member ensemble in K 5 2 dimensions, as scaled by (a) dividing each dimension by the
corresponding ensemble std dev [Eq. (5)] and (b) the Mahalanobis transformation [Eq. (6)]. Plots are centered at the ensemble mean (X )
and show also two hypothetical observations O1 and O2 in relation to the ensemble.

That is, the angle-bracket term in Eq. (3) is a fixed
quantity that is applied to each of the nens ensemble
members in all of the n forecasts in a given verification
sample. Note that some care is required in the imple-
mentation of Eq. (3), specifically that subsets of fore-
casts with nonhomogeneous bias characteristics (pos-
sibly, e.g., forecasts for winter versus summer seasons)
are analyzed separately.

Define also the (K 3 K) ensemble variance–covari-
ance matrix, including the observation, and calculated
separately for each of the n forecast occasions, as

1
TS 5 (o 2 x* )(o 2 x* )ens ens ens[nens

nens

T1 (x* 2 x* )(x* 2 x* ) , (4a)O i ens i ens ]i51

where

nens1
x* 5 o 1 x* (4b)Oens i1 2n 1 1 i51ens

is the vector ensemble mean, including the observation
o as the nens 1 1st ensemble member. Inclusion of the
observation in this way is necessary in order to obtain
essentially flat MST histograms for ensembles of real-
istic size when it is truly the case that the observation
and ensemble members are drawn from the same dis-
tribution.

One way to eliminate the effects of different mea-
surement scales on the K elements of the forecast and
observation vectors is to divide each by the correspond-

ing standard deviation [square roots of the diagonal el-
ements of Eq. (4a)],

2 1/2x̃ 5 x*/(s )k k ens,k k 5 1, . . . , K.
2 1/26õ 5 o /(s )k k ens,k

(5a)

(5b)

However, this approach ignores the effects of correlation
among the K elements of the forecast and observation
vectors, which may be very substantial where forecasts
for multiple locations are evaluated simultaneously.

An alternative scaling that also respects the correla-
tion structure is the Mahalanobis transformation (e.g.,
Mardia et al. 1979),

21/2z 5 S (o 2 x* ), (6a)ensO ens

21/2z 5 S (x* 2 x* ), i 5 1, . . . , n . (6b)ensi i ens ens

Here
21/2 21/2 TS 5 EL E ,ens (7)

in which E is the matrix whose columns are the eigen-
vectors of Sens, and L21/2 is the diagonal matrix whose
elements are the reciprocals of the square roots of the
corresponding eigenvalues. When nens # K, Sens is not
of full rank, and Eq. (7) is instead the generalized in-
verse (Mardia et al. 1979), or pseudoinverse (Stephen-
son 1997), in which E has nens columns corresponding
to the nonzero eigenvalues, and the reduced matrix
L21/2 has dimension (nens 3 nens).

Figure 3 illustrates the difference between the scal-
ings in Eq. (5) (Fig. 3a) and Eq. (6) (Fig. 3b) for a
hypothetical two-dimensional ensemble of size 50. In
Fig. 3a the scaling has transformed both forecast vari-
ables to the same (unit) variance but has left the cor-
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FIG. 4. Behaviors of scaled and debiased MST histograms for nens 5 10, as functions of increasing dimensionality
(vertical) and ensemble underdispersion (horizontal), from independent samples of size n 5 10 000. Vertical scales on
each histogram have been varied for clarity of presentation, with the level of the expected number per bin under
uniformity (10 000/11 5 909) indicated in each case by the dashed line.

relation (50.95) unaffected. According to this scaling,
a hypothetical observation O1 is at a distance of 2 (stan-
dard deviation units) from the ensemble mean (X),
which is plotted at the origin for convenience. Obser-
vation O2 is much closer (0.5 standard deviation units)
to the ensemble mean although it is outside the main
ensemble scatter, and thus further removed from the
ensemble mean according to the ensemble dispersion.
In Fig. 3b both forecast variables have also been scaled
to unit variance, but in addition the scaling in Eq. (6)
reflects nearness of points in terms of the ensemble scat-
ter itself, so that the distance [i.e., the Mahalanobis dis-
tance; Eq. (2)] from the ensemble mean to O1 is 1.4,
while the distance to O2 is 2.2. That is, the Mahalanobis
scaling emphasizes distances that are perpendicular to
the main directions of scatter in the ensemble, reflecting
the fact that points separated in such directions are less
alike than points at an equal Euclidean distance apart
in directions of the main ensemble scatter. Relative to
Fig. 3a, the Mahalanobis scaling has in effect stretched
the ensemble in the direction between the upper-left-
hand and lower-right-hand corners of Fig. 3b. The result

is that the two scaled variables z1 and z2 are uncorrelated
and more correctly reflect (in terms of distances within
the transformed space) the fact that O1 is inside but at
the edge of the ensemble while O2 is near but outside.

Tabulation of MST histograms using the Mahalanobis
transformation [Eq. (6)] is recommended in order to
judge MST lengths in a way that is consistent with the
shape of the ensemble scatter. The rank of the MST
length for the scaled and debiased ensemble z i, i 5 1,
. . . , nens, is then determined with respect to the MSTs
obtained by substituting z0 in turn for each of the z i,
and tabulating the MST histogram collectively for all n
forecast occasions. In order not to lose the bias infor-
mation, which will often be an important aspect of the
forecast verification exercise, the K biases that are sub-
tracted (angle-bracket term) in Eq. (3) need to be tab-
ulated and presented with the MST histogram.

Figures 4 and 5 show characteristic shapes of the MST
histograms derived from bias-corrected and scaled [ac-
cording to Eq. (6)] ensembles, for ensemble sizes of 10
and 54, respectively. Again, these are results for syn-
thetic, Gaussian ensembles and observations and are pre-
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FIG. 5. As in Fig. 4, but for nens 5 54, with each of the 11 bars indicating counts in five consecutive MST
histogram bins for clarity of presentation.

sented as functions of ensemble underdispersion (hori-
zontal) and the dimension K. Results for struth/sensemble 5
1 have been omitted since these result in uniform MST
histograms regardless of the ensemble size or dimension.
For the larger dimensions K, the results are relatively
insensitive to ensemble size, and the MST histograms are
similar to the no-bias cases (top row) in Fig. 2. As the
dimension increases, the MST histogram is increasingly
sensitive to dispersion errors.

Overdispersed ensembles typically contain the ob-
servation as an interior point in a K-dimensional ‘‘shell’’
(because the probability of an ensemble member very
near the ensemble mean is small in high-dimensional
spaces) through which the MST can traverse a distance
that would need to be bridged in any case. The result
is that the MST excluding the observation is the longest
or among the longest, leading to overpopulation of the
high ranks. The members of underdispersed ensembles
are typically farther from the observation than from each
other, so the MST excluding the observation tends to
be the shortest or among the shortest, leading to the
characteristic overpopulation of the smaller ranks. The
effects of ensemble size are more noticeable for smaller-
dimension K, particularly for the overdispersed ensem-

bles. Here there is a tendency for hump-shaped MST
histograms rather than overpopulated high ranks, since
in lower dimensions the ensemble tends to be more of
a filled ball rather than a hollow shell, so the MST
excluding the observation is often not extraordinarily
long or short (Fig. 1a is thus somewhat atypical of K
5 2-dimensional MSTs but has been chosen to illustrate
the higher-dimensional behavior). This effect extends to
higher dimensions for larger ensemble size, for example,
K 5 4 and nens 5 54 in Fig. 5.

3. Example

In this section the foregoing ideas are applied to a
small sample of ensemble forecasts from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
Ensemble Prediction System (EPS) (Molteni et al. 1996).
These are nens 5 51-member ensembles initialized at
0000 UTC during the winter months of January and
February 1997 and December 1997 through February
1998 and compared to the subsequent ECMWF analysis
as the ‘‘observation.’’ Forecasts at 180-h lead time for
2-m air temperature, 10-m wind speed, and fractional
cloud cover are considered, as interpolated to five lo-
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FIG. 6. (a) MST histogram for ECMWF EPS forecasts of temper-
ature (8C), wind speed (m s21), and cloud fraction (%), at Birming-
ham, Bristol, Leeds, London, and Manchester, United Kingdom (i.e.,
considering 15-dimensional forecast vectors) at 180-h lead time for
the 149 forecasts initialized during Jan and Feb 1997 and Dec 1997–
Feb 1998. (b) Results for the same data, except with cloud fractions
expressed as %/100, and (c) results omitting the cloud forecasts (10-
dimensional forecasts). The ensemble size is 51, each of the 13 bars
indicates counts in four consecutive MST histogram bins for clarity
of presentation, and the expected number of counts (11.5) under
uniformity is indicated by the dashed lines. (d) Scatterplot of MST
ranks corresponding to (b) (vertical) and (c) (horizontal) and their
correlation over the 149 cases, illustrating domination of the MST
lengths by variables with larger scales of variation.

TABLE 1. Ensemble biases [angle-bracket term in Eq. (3)] over the
n 5 149 forecasts.

Location
(United

Kingdom) Temperature (8C)
Wind

(m s21) Cloud cover (%)

Birmingham
Bristol
Heathrow
Leeds
Manchester

21.15
20.94
20.60
20.95
21.11

20.73
20.77
20.19
20.58
20.38

29.1
29.9
27.8
26.4
29.6

FIG. 7. MST histograms for the 15-dimensional forecasts, as in
Fig. 6a, after removal of biases, and standardization to common scales
according to (a) the Mahalanobis transformation [Eq. (6)] and (b)
division of each ensemble vector element by its ensemble sd dev only
[Eq. (5)]. Each of the 13 bars indicates counts in four consecutive
MST histogram bins for clarity of presentation, and the expected
number of counts (11.5) under uniformity is indicated by the dashed
lines.

cations in the United Kingdom: Birmingham, Bristol,
Heathrow (London), Leeds, and Manchester. Since there
are forecasts for three weather elements at five locations
for each of the n 5 149 forecast occasions, the dimen-
sion K of the forecast vector x is 15.

Figure 6 shows raw MST rank histograms for these
forecasts, with (a) indicating results when the cloud cov-
er is expressed as percent, (b) showing the same results
but with cloud cover expressed as a decimal fraction
(percent/100), and (c) showing results for the reduced
(K 5 10) forecasts that include only temperature and
wind speed at the five locations. Because of the wide
disparity in measurement scales, the ensemble scatter
in the five cloud cover dimensions dominates the MSTs
summarized in Fig. 6a, whereas expressing cloud cover
as decimal fractions (Fig. 6b) results in their being es-
sentially ignored, so that these MSTs are nearly confined
to the 10-dimensional subspace spanned by the five tem-
perature and five wind speed variables. This result is
confirmed by Fig. 6c, which shows the MST histogram
for the K 5 10-dimensional forecasts of the tempera-
tures and wind speeds only. Figure 6c is very similar
to Fig. 6b, with both exhibiting more extreme overpop-

ulation of the smaller ranks than Fig. 6a. Figure 6d
compares the MST ranks for these n 5 149 cases, with
ranks from Fig. 6c on the horizontal and ranks from
Fig. 6b on the vertical. Here the correlation is 0.98,
while the corresponding correlations between the points
in Fig. 6a and the other two MST histograms are about
0.25.

In order to remove the effects of different measure-
ment scales, and to separate the effects of possible bias
and dispersion errors, the same ensemble forecasts were
scaled and bias adjusted as described in section 2b. Table
1 shows the 15 bias corrections [angle-bracketed term
in Eq. (3)]. These are all negative, indicating under-
forecasting of all three elements (too cool, calm, and
clear, on average) at all five locations, although the ab-
solute magnitudes are generally modest. Figure 7 shows
the MST histograms for these forecasts (corresponding
to Fig. 6a) when scaled (a) according to the Mahalanobis
transformation [Eq. (6)] and (b) by dividing by corre-
sponding ensemble standard deviations only [Eq. (5)].
Both Figs. 7a and 7b indicate that the ensembles are
underdispersed, with the Mahalanobis scaling in Fig. 7a
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TABLE 2. Additive corrections to tabulated x2 critical values to test
uniformity of MST histograms as functions of lag 2 1 autocorrelation
f. Corrections for f , 0.4 are negligible.

f

Test level, a

0.10 0.05 0.01 0.001

0.4
0.5
0.6
0.7
0.8
0.9

0.4
0.6
1.3
2.6
5.4

15.6

0.5
0.9
1.6
3.4
7.1

21.0

0.6
1.3
2.4
5.0

11.9
37.2

1.1
2.2
4.4
8.8

22.6
68.6

reflecting also the effects of the correlations among the
forecast elements on the distances between ensemble
members. These correlations are substantial, with av-
erage correlations among the five sites of 0.988, 0.876,
and 0.935 for the temperature, wind, and cloud cover
forecasts, respectively.

4. Chi-square tests for histogram uniformity given
autocorrelated forecasts

It is conventional and appropriate to test for unifor-
mity of the scalar rank histogram using the x2 statistic
[e.g., Wilks 1995; Eq. (5.18)],

n 11 2ens [m 2 n /(n 1 1)]i ens2x 5 , (8)Onens n /(n 1 1)i51 ens

where m i is the number of counts in the ith bin, and
n/(nens 1 1) is the expected number of counts in each
bin under rank uniformity. Under the null hypothesis that
a given rank histogram was drawn from a process in
which assignment to any of the nens 1 1 bins is inde-
pendent and equally likely, this test statistic follows the
x2 distribution with nens degrees of freedom (as indicated
by the subscript on the left-hand side). If the statistic
in Eq. (8) is larger than the appropriate critical value of
this distribution, the null hypothesis is rejected. The
same concepts and test statistic are appropriate in the
case of the MST histogram.

One complication in the application of Eq. (8) to as-
sessing rank uniformity, either for scalar rank histo-
grams or for MST histograms, is that the tabulated crit-
ical values from the x2 distribution pertain to indepen-
dent sequences of ensembles. This condition implies
that sequences of forecasts must exhibit no serial cor-
relation, which of course is often not the case. For ex-
ample, the daily sequences of 180-h lead time temper-
ature and wind forecasts described in section 3 exhibit
lag 2 1 autocorrelations of approximately 0.5 and 0.4,
respectively (the cloud cover forecasts are essentially
uncorrelated).

Tabulated critical values from the x2 distribution can
be adjusted to reflect the effects of serial correlation on
the sampling variability of MST histograms, using the
values provided as functions of the lag 2 1 autocor-
relation f, in Table 2. These have been computed using
the simple stochastic model of ensemble behavior de-
scribed in the appendix, in which the observation is
statistically indistinguishable from the ensemble mem-
bers by construction, and which reflect the Mahalanobis
scaling of Eq. (6) through simulation of uncorrelated
ensemble members [the submatrices on the diagonal of
Eq. (A4), shown later in the appendix, are themselves
diagonal]. The resulting adjustments are insensitive to
the dimensionality K (K $ 2) of the ensembles and
depend on the ensemble size only through the degrees-
of-freedom parameter of the x2 distribution, which in
this setting is equal to the ensemble size. While a con-
ventional rule of thumb states that there should be suf-

ficient data to have at least five counts in each bin on
average (in the present setting, n/nens $ 5), the testing
approach and the adjustments in Table 2 were found to
be valid for n/nens $ 2 or less.

The x2 values [Eq. (8)] for the example scaled and
bias-corrected MST histograms presented in section 3
are included in Fig. 7. Even though the histograms
drawn in this figure have been collected into only 13
bins, the x2 values were computed using the 51 1 1
bin counts separately, as indicated by the subscripts in
Fig. 7. The critical levels of at the a 5 0.10, 0.05,2x51

0.01, and 0.001 levels are, respectively, 64.2, 68.7, 77.4,
and 88.0. Accordingly, assuming zero serial correlation
in the ensemble data, uniformity of the MST histogram
in Fig. 6a would be rejected at the 0.1% level (173.8
. 88.0). Because of the serial correlation in these fore-
casts, the correct critical levels are larger than the x2

quantiles (the ‘‘effective sample size’’ is smaller than
that for an equal number of independent data), although
only slightly so unless the serial correlation is quite
strong. A complication here is that the lag 2 1 auto-
correlations for the temperature, wind, and cloud cover
variables are different, but the relative insensitivity of
the adjustments in Table 2 to all but the largest values
of f minimize the problem, and in any case the example
in Fig. 7a leads to an obvious negative conclusion on
rank uniformity. The adjustment in Table 2 for f 5 0.5
and a 5 0.001 is 2.2, so the adjusted critical level 88.0
1 2.2 K 173.8, leading to easy rejection of the null
hypothesis. In cases where adjustments appropriate to
different values of f for different forecast variables
might be needed, they could be generated using these
unequal values in each of the matrices on the diagonal
of Eq. (A3).

Because the effects of the large correlations among
the forecast elements have not been accounted for in
Fig. 7b, quantitative interpretation of the x2 value for
that MST histogram is not straightforward. It would be
possible to evaluate adjusted x2 values for particular
cases through simulations using Eq. (A1), in which the
diagonal submatrices in Eq. (A4) reflected the observed
correlations (see appendix).

Finally, Table 3 contains additive adjustments to tab-
ulated x2 critical values, appropriate to evaluating uni-
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TABLE 3. Additive corrections to tabulated x2 critical values to test
uniformity of conventional (scalar) rank histograms as functions of
lag 2 1 autocorrelation f.

f

Test level, a

0.10 0.05 0.01 0.001

0.1
0.2
0.3
0.4
0.5

0.3
0.8
1.5
2.6
4.1

0.3
0.9
1.8
3.1
5.1

0.6
1.4
2.8
4.9
8.4

1.1
2.4
4.6
8.3

14.6
0.6
0.7
0.8
0.9

6.6
11.2
20.9
50.5

8.6
14.8
28.1
69.0

14.3
25.2
48.6

121.7

25.3
44.3
85.1

214.2

formity of scalar rank histograms. These were tabulated
from simulations with the simple stochastic model de-
scribed in the appendix, with K 5 1 so that the sub-
matrices in Eqs. (A3) and (A4) reduce to scalars. Again,
dependence on the ensemble size is subsumed in the x2

critical values through its degrees-of-freedom parame-
ter, and the results are valid for n/nens $ 2, at least.
Comparison of Tables 2 and 3 shows that the adjust-
ments appropriate to scalar rank histograms are much
more sensitive to serial correlation than are the values
for MST histograms in Table 2.

5. Conclusions

This paper has examined the MST histogram, a con-
ceptual extension (and not a mathematical generaliza-
tion) for multidimensional ensemble forecasts of the
conventional rank histogram for scalar forecasts. While
not a complete verification tool, in the sense that it does
not portray the joint distribution of forecasts and ob-
servations (Murphy and Winkler 1987), it does provide
diagnostic information that may be useful in interpreting
and improving ensemble forecasts. Notably, however,
the MST histogram does not provide information on the
resolution of the forecasts. That is, other things being
equal, forecasts with smaller ensemble dispersion (pro-
vided it is appropriate to the forecast accuracy) yield
more refined probabilities (and thus will be better fore-
casts to the extent that those refined probabilities are
well calibrated, or reliable), but this attribute is not re-
flected in the MST histogram. This deficiency is also a
characteristic of the conventional scalar rank histogram
(e.g., Hamill 2001).

The MST histogram presents frequencies of ranks of
lengths of ensemble MSTs, relative to the group of such
lengths derived by substituting the observation in turn
for each of its ensemble members. This convention is
consistent with usual practice for scalar rank histograms
but is opposite to the original proposal for the MST
histogram made by Smith (2001), which results in his-
tograms that are flipped horizontally relative to those

described here. In raw form, the MST histogram cannot
distinguish ensemble bias from ensemble underdisper-
sion and will downweight or ignore forecast dimensions
with small ensemble variability. This paper has advo-
cated computing the MST histograms using forecasts
that have been debiased ex post facto and scaled ac-
cording to the Mahalanobis transformation [Eq. (6)], to
eliminate the effects of different ensemble spreads in
different dimensions and to account for the effects of
correlations within the ensemble on effective distances
between ensemble members. The bias information
should be retained and reported with the MST histo-
grams.

The behavior of MST histograms has been explored
for synthetic Gaussian data, as a function of ensemble
over- or underdispersion, ensemble size nens, and data
dimension K; but this catalog of behaviors is not ex-
haustive. As noted by Hamill (2001) in the context of
scalar rank histograms, qualitative deviations from these
synthetic results may occur for real forecasts, for ex-
ample, when ensemble properties are not homogeneous
within a particular sample of n forecasts.

Adjustments to x2 values for evaluation of uniformity
of the MST histograms to accommodate serial corre-
lation in forecast data have also been presented. These
adjustments are generally modest, except for the largest
magnitudes of serial dependence. The values in Table
2 pertain to ensembles that have been scaled according
to Eq. (6) and are not appropriate to MST histograms
in which the effects of ensemble correlation on prox-
imity of ensemble members has not been accounted for.
Corresponding x2 adjustments for assessing uniformity
of scalar rank histograms have also been presented.

Verification approaches and other interpretation meth-
ods for ensemble forecasts are only just developing. In
addition to the scalar rank histogram, alternative ensem-
ble verification methods that recently have been sug-
gested include Bayesian probabilities of the observation
given the ensemble distribution (Wilson et al. 1999),
scalar performance measures based on economic value
(Richardson 2000; Wilks 2001), bounding boxes (Smith
2001), multidimensional scaling (Stephenson and Dob-
las-Reyes 2000), and time evolution of the ensemble
eigenvalues and eigenvectors, and of the ensemble en-
tropy (Stephenson and Doblas-Reyes 2000). Given the
intrinsically high dimensionality (Murphy 1991) of en-
semble forecast verification, it seems possible that a
unified approach to ensemble verification that intelli-
gibly expresses the full joint distribution of forecasts
and observations may not be achieved. The MST his-
togram may develop as one of a number of useful and
important diagnostics for ensemble forecasts.
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APPENDIX

A Multivariate Autoregressive Model for Ensemble
Forecast Behavior

Critical values for the x2 statistic assessing MST and
ordinary rank histogram uniformity for nonindependent
(serially dependent) forecast ensembles were obtained
by simulation using the standard [e.g., Wilks 1995; Eq.
(8.51)] first-order vector autoregression

x(t) 5 Fx(t 2 1) 1 B e(t). (A1)

While other forms for the underlying stochastic model
would affect the results reported in Tables 2 and 3,
although possibly only to a small degree, first-order au-
toregressions have been chosen because they are often
very reasonable models for daily weather data (e.g.,
Wilks 1995). Here the forecast vector x simultaneously
encompasses the vector observation x0 and all nens K-
dimensional forecasts xk, as

T T T T Tx 5 [x | x | x | · · · | x ] . (A2)0 1 2 nens
K(n 11)31ens

That is, x is partitioned into nens 1 1 K-dimensional sub-
vectors, the first of which corresponds to the observation
vector. The matrix F is block diagonal, according to

 f I 0 0 · · · 0

0 f I 0 · · · 0 
F 5 0 0 f I · · · 0 , (A3) 

_ _ _ _ 
0 0 0 · · · f I 

where each submatrix is (K 3 K), corresponding to the
partition of x in Eq. (A2). Here all autoregressive co-
efficients f (equal to the lag 2 1 autocorrelation for
the respective scalar time series), 0 # f , 1, for the
K forecast elements are equal, and the submatrix f I for
the observation vector in the upper-left-hand corner is
equal to those for each of the ensemble members. These
assumptions are consistent with the purpose of section
4, in which the observation must be drawn from the
same distribution as the ensemble by construction, al-
though they could be relaxed in other applications.

The matrix B in Eq. (A1) depends also on the matrix
of simultaneous (i.e., unlagged) variances and covari-
ances, specified here as

 I r I r I · · · r I
r I I r I · · · r I 

S 5 r I r I I · · · r I . (A4) 0

_ _ _ _ 
r I r I r I · · · I 

Here the diagonal submatrices are all the identity I, in-
dicating unit variance for, and no correlation among, all
forecast elements within each ensemble member. The
uncorrelatedness of the ensemble members is consistent
with the Mahalanobis scaling in Eq. (6) that has been
recommended for MST histogram calculation. In other
applications these conditions could be relaxed, allowing
in particular that different forecast elements have dif-
ferent variances and nonzero correlation. The parameter
r, 0 # r , 1, in Eq. (A4) controls the ensemble dis-
persion, and so the lengths of the MSTs, but is imma-
terial with respect to the ranks of the MST lengths. It
has been set to the value 0.9 in the simulations that
produced Tables 2 and 3. When the off-diagonal sub-
matrices in Eq. (A4) are not themselves diagonal, an
ellipsoidal region, rather than a (hyper-) spherical re-
gion, of the K-dimensional forecast space is occupied
by the simulated ensembles.

Using Eqs. (A3) and (A4), B can be any matrix sat-
isfying

TTBB 5 S 2 FS F0 0 (A5)

This equation is arrived at by postmultiplying Eq. (A1)
by and taking expectations to yield the simultaneousTxt

covariance matrix S0 5 F 1 BBT, similarly multi-TS1

plying Eq. A1 by and taking expectations to yieldTxt21

the lag 2 1 autocovariance matrix S1 5 FS0, and com-
bining the two equations (e.g., Bras and Rodriguez-Itur-
be 1985). A consistent solution for B can be obtained
using the Cholesky factorization of BBT (e.g., Atkinson
1978; Bras and Rodriguez-Iturbe 1985), or through its
eigenvalues and eigenvectors [i.e., the inverse of Eq.
(7)]. Equation (A1) can then be used for stochastic sim-
ulation by subsituting, at each time step t, a vector of
independent standard normal variates for e(t).
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